

Designing a Health Village with a Sustainable Architectural Approach

Mehdi Ramezani¹ , Abazar Mehrali²

1. Department of Architecture, Faculty of Art and Architecture, Ya.C., Islamic Azad University, Yazd, Iran. E-mail: mahdiramezani2507@gmail.com
2. Corresponding author, Department of Architecture, Faculty of Art and Architecture, Ya.C., Islamic Azad University, Yazd, Iran. E-mail: abazar.mehrali@iau.ac.ir

Article Info

ABSTRACT

Article type:

Research Article

Article history:

Received February 22, 2025

Received in revised form July 01, 2025

Accepted September 01, 2025

Published online October 10, 2025

Keywords:

Health village,
Sustainable
architecture,
Mental health.

Designing a Health Village as a part of Modern Healthcare Systems Aims to deliver Comprehensive Care to both Individuals and Communities. This concept fosters health and well-being by integrating healthcare, wellness, and social services into cohesive and sustainable model. The present study was conducted with the objective of designing a health village grounded in sustainable architecture, emphasizing elements that enhance mental health and create a calm environment.

The research employed a qualitative methodology, utilizing descriptive and content analysis approaches. Within this framework, five primary physical indicators—scale and proportion, form and shape, materials and details, building location, and spatial organization—were examined.

The findings revealed that among these indicators, view and landscape were the most significant factors within the building location category; human scale was the most influential under the scale and proportion indicator; coherence and harmony predominated the form and shape category, and color diversity had the greatest impact within materials and details. Furthermore, both components of spatial organization exhibited comparable influence on the design of the health village environment.

In the final ranking of physical indicators, scale and proportion held first place, followed by form and shape, and then materials and details; meanwhile building location, spatial organization, and flexibility demonstrated the least influence on the design process. These results can serve as guidelines for the design of health-oriented spaces.

Cite this article: Ramezani, M., & Mehrali, A. (2025). Designing a Health Village with a Sustainable Architectural Approach. *International Journal of Applied Arts Studies*, 10(3), 71-92.

© The Author(s).

Publisher: Islamic Azad University, Yazd Branch.

Introduction

Industrial life in most countries of the world has brought with it a set of requirements and created needs for the people of different societies. One of these needs is to improve the health of the community and provide appropriate infrastructure for a healthy community, which is one of the main pillars of sustainable development. With the increasing daily urban concerns, people's attention to themselves and their needs has decreased. People are involved in daily urban life and every day without paying attention to their instinctive needs, they go about their daily routine and are somehow away from their individual needs, until they come to themselves and suffer from mental and psychological illnesses.

Health Village

As a new response to these needs, is a comprehensive center that provides medical, accommodation, recreational and educational services, providing an ideal platform for escaping the pressures of modern life and revitalizing the physical and mental health of individuals.

The profound impact of nature on human recovery and community health has been well-established for decades. Nature's restorative power extends beyond the well-being of the current generation, laying the foundation for the health of future generations as well.

The concept of a health village embodies a medical center that delivers primary and secondary healthcare services to patients within a unique environment, fostering an atmosphere that elevates the spirits of hospitalized individuals (Jafari, 2022). The fundamental principles that typically govern health villages encompass the provision of top-notch medical services, effective communication, patient-centered care, and inpatient services. The ultimate goal of these villages is to ensure the comfort and security of patients during their recovery or while receiving healthcare services (Wahyu, Ardhiles, and Puji Hastuti, 2024).

A cornerstone of health village design lies in creating a suitable physical environment that promotes health and disease prevention. This may include elements such as green spaces, walking and cycling paths, and easy access to healthy food options. By incorporating these features into health village design, residents can be encouraged to adopt healthy behaviors and embrace a more active lifestyle (KochakYazdi, Asadi, and Ghorbani Nia, 2019).

Based on this, the present study is designed to design a health village with a sustainable architecture approach that can answer the fundamental question of what indicators and criteria are effective for designing a health village with a sustainable approach and what is the role of each of these indicators and criteria?

Coexistence of Nature and Architecture

Humans have always been connected to nature, and they have tried to manipulate it in a way that optimizes nature's service to them. This type of coexistence can be clearly seen throughout human history. In other words, since the time when humans-built shelters, homes, and environments, they have always paid attention to the natural elements and have used nature as an important and fundamental part of their plans and designs (Kiani, 2008).

The harmonious coexistence of humans and nature was a defining feature of Islamic civilization, just as it was in many other traditional cultures. Islamic architecture, with its emphasis on sustainability and environmental consciousness, beautifully exemplifies this deep connection to the natural world.

A prime illustration of this synergy is the ingenious use of wind towers in central Iranian cities like Yazd, Kashan, and Kerman. These architectural marvels, rooted in Islamic culture, harness the power of natural elements like wind to provide passive cooling, a testament to humanity's ability to work in harmony with nature. Not only are these wind towers aesthetically pleasing and functionally effective, but they also stand as a stark contrast to modern architecture's often adversarial relationship with the environment. (Nasser, 2001). The significance of this symbiotic relationship extends far beyond mere material gains. It fosters a profound understanding and appreciation of the natural world, strengthening the bond between individuals and their surroundings. This, in turn, leads to a more mindful utilization of natural resources, such as sunlight, water, and wind, minimizing reliance on external energy sources. Unfortunately, contemporary civilization has largely overlooked this crucial aspect of architecture. As a result, there is a growing movement advocating for a return to a nature-centric approach to design. This movement recognizes the profound impact of our physical surroundings on our well-being, shaping our personality, behavior, and overall functioning. In light of this growing awareness, this article delves into the intricate relationship between nature and library architecture. It explores the various methods by which library buildings can seamlessly integrate with their natural surroundings, considering factors such as climate, topography, and aesthetics. The goal is to create library spaces that not only promote knowledge and learning but also foster a sense of tranquility and connection with the natural world, ultimately enhancing the overall experience of library users (Mamaghli, 2016).

Sustainability, a fundamental concept in ecology, refers to actions that do not jeopardize the continued existence of life and ecosystems. For humans, sustainability entails the potential for long-term well-being, encompassing environmental, economic, and social dimensions. In essence, sustainability is what elevates the quality of architecture and design to an equal footing with the quality of materials used. By recognizing that the performance of buildings dictates their

useful lifespan, efficiency, and energy consumption, sustainable architecture embodies this principle for architects in the most effective way possible way.

The term "sustainability" was first coined in 1986 by the World Commission on Environment and Development as a strategy to "meet the needs of the present without compromising the ability of future generations to meet their own needs" (Saremi, 1987). Since then, its scope and reach have expanded, providing a comprehensive framework for addressing global challenges. Delving into sustainable architecture and the factors that shape such a design approach necessitates a deeper understanding of sustainability goals and recommendations. On the one hand, addressing environmental, cultural, social, and economic issues, and the intricate interconnectedness of these matters, draws us towards vernacular architecture and its sustainable approach, allowing us to extract lessons for contemporary architectural design. Vernacular architecture, as a realm of aesthetics and spirituality, holds immense significance in its purity of thought and respect for nature. While subjected to transformative phenomena throughout history, vernacular architecture has retained its distinctive identity, reflecting the customs, spirit, emotions, thoughts, beliefs, taste, and artistry of its creators (Dadkhah, 2005).

Principles of Sustainable Architecture based on the Perspective of Brand and Robert Wall

Energy Conservation: Building design should minimize dependence on fossil fuels and utilize renewable energy sources (Hossaini, Hewage, and Sadiq, 2018). This includes optimizing the building envelope, implementing natural ventilation systems, and employing energy-efficient technologies (IEA, 2022).

Climatic Adaptation: Buildings should be designed in accordance with the climatic conditions of the region to optimize the use of local energy resources (Almusaed, 2023). This principle emphasizes passive design strategies, including appropriate orientation, shading, and thermal insulation (Givoni, 2021).

Reduction of New Resource Consumption: Sustainable architecture should prioritize the use of recycled and recyclable materials and adhere to circular economy principles (Eberhardt, Birkved, and Birgisdottir, 2022). This includes designing for easy material separation at the end of the building's lifecycle (ARUP, 2023).

Meeting Occupant Needs (Human-Centered Design): Design should follow environmental-psychological principles to promote the physical and mental well-being of occupants (Kellert, Heerwagen, and Mador, 2011). Studies indicate that integrating natural elements into interior spaces can increase productivity by up to 15%.

Site Integration: Buildings should be designed to minimize negative impacts on the local ecosystem. This includes preserving existing vegetation and mitigating the urban heat island effect (USGBC, 2022).

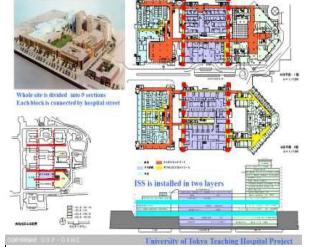
Holistic Approach: All principles of sustainable architecture should be applied cohesively within the framework of living systems (Capra and Luisi, 2023). This approach requires interdisciplinary collaboration throughout all phases of design and implementation.

Sustainable Architecture

Sustainable architecture is a philosophy of architecture that considers economic, social, and cultural aspects simultaneously. In essence, with this type of architecture, we invite nature into our homes. Sustainability means resistance, flexibility, endurance, lasting stability, and, in fact, what can continue in the future. It's something that remains constant. Today, this term is widely used to describe a world in which human and natural systems can coexist far into the future (Bahreini, and Maknoon, 2010). while without reduction and meaning preservation and maintenance. The adjective "sustainable" means using natural products and energy in a way that does not harm the environment. This adjective describes something that soothes, nourishes, and sustains life, thereby prolonging and extending life (Ahmadi, 2013; Sangmesh, et al 2010) Sustainability is the quality of being stable. The Cambridge dictionary defines it as: "the quality of being able to continue over a period of time. Therefore, sustainability is the quality of lasting over time without changing its specific characteristics and can be associated with various natural, social, political, or economic phenomena (Ballestar, Cuerdo-Mir, and Freire-Rubio, 2020; Şirin, Jamie, and Magdalena, 2023; Goubran et al, 2023) In general, there are three main elements in the definition of sustainability: 1. Improving the quality of life and human health (present and future generations) Meeting the daily needs of humans 3. Preserving ecological systems and energy resources (Khanbanzadeh, 2014; Lee et al, 2024).

"Humans, based on their needs, values, and goals, transform the environment and, in turn, are influenced by the transformed environment". Some consider this rapid environmental change to be destructive and leading to the disintegration of the "human-environment" ecosystem, emphasizing that any fundamental and deep change in the natural environment should be considered in terms of its long-term impact on humans and the prediction of its positive and negative consequences. Rapid environmental change is a fundamental characteristic of recent times. New cities, neighborhoods, and buildings are constructed every day. These physical situations impose certain behavioral patterns and social roles on their inhabitants; or they strengthen some behavioral patterns and criteria and weaken others, and in short, give a new direction and tool to the behavior of their inhabitants (Khanday, Mudasir, Shazia, and Farooq, 2023; Kumar et al, 2023).

Over the past two decades, the field of psychology, like other scientific disciplines, has not remained indifferent to this phenomenon, namely the impact of humans on the environment and the reciprocal impact of the environment on humans, and has achieved more scientific findings. What distinguishes environmental psychology from other branches of psychology is the


examination of the relationship between behavior based on human psychology and the physical environment. Therefore, the attention of designers to the psychological examination of designed spaces has created an inseparable link between environmental psychology and design (Mishra, and Arun Kumar, 2023). To the extent that architects have realized the necessity of creating a common language between them and psychologists and have strived to build and create new knowledge to construct an environment that can be more familiar to people. Environmental psychology, with the assumption of the indirect impact of the physical environment on human behavior, which ultimately required the examination of architectural and urban environments on the one hand, and on the other hand, the attention of environmental designers to meet the needs of customers and users of designed spaces, led to the beginning of the acquaintance of psychology with the design profession and vice versa, and as a result, a new field of knowledge or a new paradigm called environmental psychology was formed (Rane, 2023).

Humans, based on their needs, values, and goals, transform the environment and, in turn, are influenced by the transformed environment. Some perceive this rapid environmental change as destructive and leading to the disintegration of the "human-environment" ecosystem, emphasizing that any fundamental and deep change in the natural environment should be considered in terms of its long-term impact on humans and the prediction of its positive and negative consequences. Rapid environmental change is a fundamental characteristic of recent times. New cities, neighborhoods, and buildings are constructed every day. These physical situations impose certain behavioral patterns and social roles on their inhabitants; or they strengthen some behavioral patterns and criteria and weaken others, and in short, give a new direction and tool to the behavior of their inhabitants (Wener and Carmalt, 2006; Yang, 2007).

Examples of Established Health Village

In the Table 1, examples of health villages created are presented.

Table 1. Health village examples.

Area	Location	architecture	Results	Site
John George Psychiatric Hospital	71000 square meters	<p>On top of a high hill in an area with Mediterranean style buildings</p> <p>The large square is connected to an office building.</p> <p>A lush green courtyard in the center of the village.</p> <p>Residential units resembling private homes.</p> <p>High ceilings and</p>	<ul style="list-style-type: none"> □ This project demonstrates how design can contribute to creating a positive healing environment. □ Attention to detail, such as furniture and lighting, can make a big difference. □ It is important to design spaces for both social interaction and privacy 	

			<p>large windows in the patients' bedrooms.</p> <p>Public spaces with skylights and an open plan.</p> <p>Diversity of building forms.</p> <p>Covered walkways.</p> <p>Tower-like building on the site as a museum, administrative center, and meeting place.</p> <p>Four short-term residential treatment units with Scandinavian-style handcrafted furniture.</p> <p>Wooden ceilings.</p> <p>Walls with varied textures.</p> <p>Use of color to aid in wayfinding.</p>		
Natural Life Center	14000 square meters	Central Anatolian steppe	<p>Using artificial ponds from the previous fish farm as a design element.</p> <p>Revival of vegetation around the site.</p> <p>Accommodation for short and long term stays.</p> <p>Open space for</p>	<p>Turning artificial ponds into a positive feature.</p> <p>Integration with the natural environment.</p> <p>Providing an opportunity to learn about sustainability.</p> <p>Promoting a healthier lifestyle.</p>	

			<p>events and workshops.</p> <p>Small market.</p> <p>Greenhouses and organic farms.</p> <p>Small scale energy production systems.</p> <p>Recreational spaces related to water</p>		
Healing garden of life in Chamcha mal	35000 sq. m	Iraq	<p>Inspired by traditional village architecture. Using local materials such as soil, wood and brick.</p> <p>Creating calm and safe spaces.</p> <p>Combination of indoor and outdoor spaces.</p> <p>Using shaded roofs to protect against heat.</p> <p>Use of thick walls to maintain optimal temperature.</p> <p>Structural systems resistant to earthquakes.</p>	<p>Creating a space for the treatment of animals and humans.</p> <p>Revival of Kurdish building traditions.</p> <p>Promoting the use of sustainable materials</p> <p>Providing a model for the future development of architecture in the region.</p>	

Buckleuch town	71000 Sq. m.	London	<p>Merging two types of housing in a single plan</p> <p>Creating a dynamic space that can adapt to future developments.</p> <p>Use of three separate inputs and vertical circular cores.</p> <p>Wide view of the surrounding landscape for all units In there.</p> <p>Parking restrictions in the front and rear view</p> <p>Balconies designed according to the type of unit (like families, seniors)</p> <p>Elderly people units in the form of one bedroom with an area of 50 square meters.</p> <p>Warm and communal living space on the ground floor with a direct view of the yard and garden</p>	<p>Creating different and enjoyable spaces for residents</p> <p>Sharing space and time between residents</p> <p>Providing shelter for the elderly people</p> <p>Promoting intergenerational interactions</p>	
-----------------------	--------------	--------	---	--	---

Research Methodology

The present research is a qualitative study with a descriptive and analytical approach. In order to achieve the research objectives, effective indicators and criteria for designing and constructing health villages were extracted and codified. Content analysis and factor analysis methods were

used to analyze the data, and lastly, the ranking method was used to examine the importance of each of the indicators and components.

The Sign Test is a non-parametric statistical test used to examine the difference between two means within a single population (Krippendorff, 2018). Similar to the Wilcoxon test, it serves as the non-parametric equivalent of the paired t-test (Siegel & Castellan, 2021). Steps to Conduct the Sign Test:

Research Population and Sample

The statistical population included reputable scientific literature, architectural design documents, and standards related to health villages.

A purposive sampling method was employed, and 25 relevant sources (articles, books, and design reports) were selected.

Data Collection Instruments

A content analysis protocol was used to extract design indicators.

A researcher-made questionnaire (reliability $\alpha = 0.82$) was developed to assess the importance of the indicators, evaluated by 15 experts (architects, healthcare professionals, and environmental psychologists).

Data Analysis Procedure

Content Analysis

Open Coding: Initial extraction of components (examples: "green spaces," "access to natural light").

Axial Coding: Categorization of codes into five main indicators (scale and proportion, form and shape, materials, building location, spatial organization).

Hypothesis Formulation and Effect Size Estimation

Hypothesis Formulation:

Null Hypothesis (H0): The means of the two groups are equal.

Alternative Hypothesis (H1): The means of the two groups differ significantly from each other.

Significance Level Determination:

The significance level (α) is the threshold used to determine statistical significance in hypothesis testing. It represents the probability of rejecting the null hypothesis (H0) when it is actually true (Type I error). A commonly used significance level is 0.05, which means that a

result is considered statistically significant if the p-value (the probability of obtaining the observed test statistic or more extreme under the null hypothesis) is less than or equal to 0.05.

Data Sorting:

Sorting the data of each group in ascending order can be a useful step in various data analysis procedures. It can facilitate visual inspection of the data distribution, identification of potential outliers, and calculation of descriptive statistics such as median and quartiles. Additionally, sorted data may be required for certain statistical tests or data visualization techniques.

Calculation of Ranks

Ranking involves assigning numerical values (ranks) to the data points within each group, based on their relative positions. The rank of a data point indicates its place in order from smallest to largest within its group.

Assigning Signs:

Assigning signs is a crucial step in the Wilcoxon signed-rank test (sign test) and other non-parametric tests that utilize signed ranks. The signs represent the direction of the difference between paired observations, allowing for an assessment of whether one group tends to have higher values than the other.

Steps for Assigning Signs:

Create Paired Differences: For each pair of observations, calculate the difference between the values of the corresponding variable (factor) in the two groups.

Assign Signs: Based on the calculated differences:

Assign a "+" sign if the value of the variable in Group 1 is greater than the value in Group 2.

Assign a "-" sign if the value of the variable in Group 1 is less than the value in Group 2.

Assign a "0" sign if the values of the variable in both groups are equal.

Counting Positive and Negative Signs: Counting the positive and negative signs is an essential step in the Wilcoxon signed-rank test (sign test) after assigning signs to the paired differences. The number of positive and negative signs provides the basis for calculating the test statistic, which determines the statistical significance of the observed differences between the groups.

Calculation of Test Statistic:

The test statistic for the (sign test) is calculated using the following formula:

$$Z = (|T_{+} - T_{-}| - \frac{1}{2}) / \sqrt{n(n - 1)}$$

- T_{+} : number of positive signs

- T-: number of negative signs
- n: sample size

Calculation of p-value:

Using the Z table, the p value for Z has been calculated.

Discussion and Findings

To assess the impact of each factor on creating a health village atmosphere, the sign test was employed. The number 3 (average state) was used as the median, and the number of cases above, below, and equal to the median were identified.

Impact of the Building Location Indicator on the Creation of the Health Village Space

As shown in the Table 2, the frequency of individuals who scored higher than 3 on all three statements related to the building location component is significantly higher ($P < 0.05$). Therefore, it can be concluded that the impact of all three statements related to building location on creating a health village atmosphere is high.

Table 2. Sign test for evaluating the impact of the building location indicator on the creation of the health village space.

Index	Criterion	Median	Number of Negative differences	Number of Positive differences	Equal number of items	Z test	P
Building location	Varied landscape and visual beauty	3	70	2	1	-7.2	P<0.00
	Considering the ratio of open space to build space	3	70	3	1	-6.6	P<0.00
	A lively and diverse mix of uses surrounding the complex	3	88	2	1	-9.12	P<0.00

Impact of the Scale and Proportion Indicator on Creating the Space of the Health Village

As shown in the Table 3, for 3 out of 6 statements in the scale and size indicator, the frequency of individuals who scored higher than 1 is significantly higher ($P < 0.05$). Therefore, it can be concluded that the impact of 3 out of 6 statements related to the scale and size indicator on creating a health village complex is high.

Table 3. Sign Test for evaluating the impact of the scale and proportion indicator on the creation of the health village space.

Index	Criterion	Median	Number of Negative differences	Number of Positive differences	Equal number of items	Z test	P
Scale and Size	Horizontal layout of the building's form	3	55	6	10	-6.2	P<0.00
	Vertical layout of the building's form	3	36	42	15	-1.3	P<0.00
	Compact building arrangement and elevated heights of the complex's structures surrounding the complex	3	26	55	0	-2.36	P<0.00
	Low building density and low building heights within the complex	3	66	7	7	-6.87	P<0.00
	Ensuring the proportionality of building facades and preserving the geometric integrity of existing structures and landscapes	3	77	5	0	-8.23	P<0.00
	Designing the complex's dimensions and sizes in accordance with the human scale	3	81	4	0	-8.77	P<0.00

Impact of the Form and Shape Indicator on the Design of the Health Village Complex

As shown in the Table 4, for all 4 statements in the shape and form component, the frequency of individuals who scored higher than 1 is significantly higher ($P < 0.05$). Therefore, it can be concluded that the impact of all four statements related to the shape and form indicator on creating a health village complex is high.

Table 4. Sign test for evaluating the impact of the form and shape indicator on the creation of the health village space.

Index	Criterion	Median	Number of Negative differences	Number of Positive differences	Equal number of items	Z test	P
Shape and form	Form entries and collection windows	3	87	5	4	-7.2	P<0.01
	Attractiveness, Beauty of Form, and Compliance With rhythm and order and harmony of its elements together	3	72	8	3	-6.6	P<0.00
	Avoiding unnecessary additions in the design of complex buildings	3	80	3	0	-9.12	P<0.01
	Using familiar cultural elements to improve the quality of architecture	3	74	5	3	-6.59	P<0.00

Impact of the Materials and Details Indicator on the Design of the Health Village Complex

As shown in the Table 5, for all four statements in the materials and details component, the frequency of individuals who scored higher than 3 is significantly higher ($P < 0.05$). Therefore, it can be concluded that the impact of all four statements related to the materials and details indicator on creating a health village complex is high.

Table 5. Sign test for evaluating the impact of the materials and details indicator on the creation of the health village space

Index	Criterion	Median	Number of Negative differences	Number of Positive differences	Equal number of items	Z test	P
Materials and the details	Materials used in residential complexes	3	74	9	2	-8.11	P<0.01
	Using diverse colors	3	69	8	2	-6.02	P<0.01
	Proportionate material composition	3	72	3	1	-8.33	P<0.01
	Using diverse decorations	3	63	12	2	-4.85	P<0.00

Impact of the Diversity and Compatibility Indicator on the Creation of the Health Village Space

As shown in the Table 6, for both statements in the diversity and compatibility of spaces component, the frequency of individuals who scored higher than 3 is significantly higher ($P <$

0.05). Therefore, it can be concluded that the impact of both statements related to the diversity and compatibility of spaces indicator on creating a health village complex is high.

Table 6. Sign test for evaluating the impact of the diversity and compatibility indicator on the creation of the health village space.

Index	Criterion	Median	Number of Negative differences	Number of Positive differences	Equal number of items	Z test	P
Diversity and compatibility	Utilizing diverse volumes and forms in the design of complex structures	3	69	8	4	-6.03	P<0.01
	Creating distinctive elements and a unique and memorable atmosphere in the attractiveness of the collection	3	65	13	6	-5.3	P<0.01

Impact of the Spatial Organization Indicator on the Design of the Health Village Complex

As shown in the Table 7, for both statements in the spatial organization component, the frequency of individuals who scored higher than 3 is significantly higher ($P < 0.05$). Therefore, it can be concluded that the impact of both statements related to the spatial organization component on creating a health village complex is high.

Table 7. Sign test for assessing the impact of the spatial organization indicator on the creation of the health village space.

Index	Criterion	Median	Number of Negative differences	Number of Positive differences	Equal number of items	Z test	P
Spatial organization	Compliance with hierarchy and ease of use	3	72	10	4	-7.03	P<0.01
	Easy access and navigation	3	69	15	8	-6.3	P<0.01

Impact of Spatial Diversity and Compatibility Indicators on the Design of the Health Village Complex

As shown in the Table 8, for both statements in the diversity and compatibility of spaces component, the frequency of individuals who scored higher than 3 is significantly higher ($P < 0.05$). Therefore, it can be concluded that the impact of both statements related to the diversity and compatibility of spaces indicator on creating a health village complex is high.

Table 8. Sign test for assessing the impact of the diversity and compatibility indicator on the creation of the health village space.

Index	Criterion	Median	Number of Negative differences	Number of Positive differences	Equal number of items	Z test	P
Diversity and compatibility of spaces	Use of diverse volumes and forms in the design of complex structures	3	75	8	5	-6.11	P<0.01
	Creating distinctive elements and a unique and memorable atmosphere	3	68	11	9	-5.98	P<0.01

Ranking of Health Village design indicators and criteria with a sustainable architecture approach

The ranking results of the factors related to the location of the building showed that the most important item in this factor was visibility, the most important factor for the scale and size index was compliance with the human scale, the most important factor for the shape and form index was consistency and harmony. The most important factor for the index of materials and details was color variety. Both items related to the indicators of spatial organization had a similar effect in creating the atmosphere for the health village.

As shown in the Table 9, The ranking results of the physical dimension indicators in the creation of a health village environment, the scale and size index ranked first, the shape and form index ranked second, and the materials and details index ranked third. The items of building location, spatial organization and flexibility received the lowest rank.

Table 9. Ranking of indicators and design criteria for the health village based on a sustainable architecture approach.

Criterion	Rank	Number of negative differences	Rank
Scale and size	1	Compliance with the human scale	1
		facade proportions	2
		Low density of building floors	3
		Horizontal and vertical proportions (horizontality)	4
Shape and form	2	Compatibility and coordination	1
		Door and window form	2
		Cultural familiarity elements	3

		Avoiding unnecessary attachments	4
		Variety of colors	1
Materials and details	3	Type of materials and composition of materials	2
		Decorations	3
Building location		Vision and perspective	1
	4	Percentage of mass and space	2
		Neighborhood unit type	3
Spatial organization	5	Spatial hierarchy	1
		Creating public and private spaces	2

Conclusion

The relationship between architecture and the natural world is a delicate balance to achieve. Through thoughtful design, architects can create structures that coexist harmoniously with their surroundings, preserving and protecting natural elements such as trees, water bodies, and wildlife habitats. By emphasizing this relationship, ecological architecture strives to create aesthetically pleasing spaces that evoke and nurture a deep connection with nature.

Design and materials play a fundamental role in sustainable architecture, ensuring the integration of sustainable practices and a strong connection with nature. By incorporating locally sourced materials, architects can minimize the environmental impacts of construction while also supporting the local economy.

Utilizing local materials is a key principle in sustainable architecture. By employing materials readily available within the surrounding environment, architects can reduce the energy required for transportation and minimize carbon emissions. This approach not only contributes to a smaller environmental footprint but also adds a unique sense of place to the design.

In sustainable architecture, the relationship between design and nature is an essential aspect. Architects strive to create buildings that seamlessly blend with the natural environment, enabling harmonious coexistence between human-made structures and the surroundings.

The integration of renewable energy sources is another integral aspect of energy-efficient ecological architecture. Incorporating solar panels, wind turbines, and geothermal systems into building designs allows for the on-site generation of clean and sustainable energy. By harnessing the power of these renewable sources, buildings can reduce their reliance on fossil fuels and contribute to a greener and more resilient energy infrastructure.

Looking towards the future, the future of energy conservation in architecture holds exciting prospects. Advancements in technology and materials offer the potential for even greater energy

efficiency. Cutting-edge approaches, such as net-zero energy buildings and passive house design, are pushing the boundaries of energy conservation by aiming to produce as much energy as they consume. Additionally, the integration of smart building systems and artificial intelligence promises to optimize energy consumption, enhance occupant comfort, and reduce environmental impacts.

Incorporating these energy-efficient practices into ecological architecture is not only beneficial for the environment but also cost-effective in the long run. As architects and designers continue to prioritize sustainability, energy efficiency will remain a driving force in shaping the future of ecological architecture.

Addressing climate change and promoting sustainability are major challenges in sustainable architecture, presenting significant opportunities for innovative design and construction practices. This section explores the various aspects related to these challenges and opportunities.

One of the pressing challenges in the realm of ecological architecture is mitigating the impacts of climate change. Architects can play a crucial role in combating climate change by adopting sustainable building practices, such as utilizing renewable energy sources, optimizing energy efficiency, and reducing carbon emissions. Designing structures that minimize their environmental footprint and rely on environmentally friendly materials can help reduce greenhouse gas emissions and contribute to a more sustainable future.

Author Contributions

All authors contributed equally to the conceptualization of the article and writing of the original and subsequent drafts.

Data Availability Statement

Data available on request from the authors.

Acknowledgements

The authors would like to thank all participants of the present study.

Ethical considerations

The study was approved by the Ethics Committee of the Islamic Azad University, Ya.C. The authors avoided data fabrication, falsification, plagiarism, and misconduct.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare no conflict of interest.

References

Ahmadi, Z. (2013). *Sustainable architecture, sustainability patterns in Iranian architecture*. Tehran: First and last publications.

Almusaed, A. (2023). *Biophilic and bioclimatic architecture*. Springer. <http://dx.doi.org/10.1007/978-1-84996-534-7>

ARUP. (2023). *The circular economy in the built environment*. <https://www.arup.com/globalassets/downloads/insights/circular-economy-in-the-built-environment.pdf>

Bahreini, S. H., & Maknoon, R. (2010). Sustainable urban development from thought to practice. *Environmental Journal*, 27. https://jes.ut.ac.ir/article_25626.html

Ballestar, M. T., Cuerdo-Mir, M., & Freire-Rubio, M. T. (2020). The concept of sustainability on social media: a social listening approach. *Sustainability*, 12(5), 2122. <https://doi.org/10.3390/su12052122>

Capra, F., & Luisi, P. L. (2023). *The systems view of life: A unifying vision*. Cambridge University Press.

Eberhardt, L. C. M., Birkved, M., & Birgisdottir, H. (2022). Building design and construction strategies for a circular economy. *Architectural Engineering and Design Management*, 18(2), 93-113.

Goubran, S., Walker, T., Cucuzzella, C., & Schwartz, T. (2023). Green building standards and the united nations' sustainable development goals. *Journal of Environmental Management*, 326, 116552. <https://doi.org/10.1016/j.jenvman.2022.116552>

Givoni, B. (2021). *Climate considerations in building and urban design*. Routledge.

Hossaini, N., Hewage, K., & Sadiq, R. (2018). Path toward net-zero buildings: a natural capital assessment framework. *Clean Technologies and Environmental Policy*, 20(1), 201-218.

Jafari, Z. (2022). *Designing the multi-functional complex of the health village of Baroikord to promote mental health (a case study of Lavasan region)*. Master's thesis in the field of architectural engineering. Alam and Farhanak University, Tehran. <https://ganj.irandoc.ac.ir/#/articles/8a6d52293e5e2c52739d779c503f79a8>

Kellert, S. R., Heerwagen, J., & Mador, M. (2011). *Biophilic design: the theory, science and practice of bringing buildings to life*. John Wiley & Sons.

Kochakyazdi, S., Asadi, A., & Ghorbani Nia, R. (2019). Health Village and its place in the Health System. *Health-Based Research*, 5(1), 57-71. <https://hbrj.kmu.ac.ir/article-1-333-en.html>

Khanbanzadeh, S. (2014). The principles and standards of sustainability in the works of Norman Foster. *National Conference on Architecture, Urban Development, Civil and Tourism, Sustainable Urban Development*. <https://civilica.com/doc/403489/>

Khanday, Mudasir A., Shazia, R., & Farooq, A. (2023). IT Spiking Neuron Using Ferroelectric Junctionless FET with Ultra-Low Energy Consumption of 24 aJ/Spike. *Neural Processing Letters* 55(8), 11527-11539. <http://dx.doi.org/10.1007/s11063-023-11387-x>

Kumar, A., Kamal, A. K., Singh, J., & Gupta, B. (2023). Ultra low energy charge trapping MOSFET with neuro-inspired learning capabilities. *IEEE Transactions on Nanotechnology*, 22, 266-272. <https://ieeexplore.ieee.org/document/10146483>

Krippendorff, K. (2018). *Content analysis: An introduction to its methodology*. Sage. https://books.google.com/books/about/Content_Analysis.html?id=s_yqFXnGgjQC

Lee, K. L., Teong, C. X., Alzoubi, H. M., Alshurideh, M. T., Khatib, M. E., & Al-Gharaibeh, S. M. (2024). Digital supply chain transformation: The role of smart technologies on operational performance in manufacturing industry. *International Journal of Engineering Business Management*, 16, 18479790241234986. <https://journals.sagepub.com/doi/10.1177/18479790241234986?cid=int.sj-abstract.similar-articles.7>

Mishra, A., & Arun Kumar R. (2023). Multi-Access Edge Computing assisted ultra-low energy scheduling and harvesting in multi-hop Wireless Sensor and Actuator Network for energy neutral self-sustainable Next-gen Cyber-Physical System. *Future Generation Computer Systems*, 141, 298-324. <https://doi.org/10.1016/j.future.2022.11.023>

Rane, N. (2023). Integrating leading-edge artificial intelligence (AI), internet of things (IOT), and big data technologies for smart and sustainable architecture, engineering and construction (AEC) industry: Challenges and future directions. <http://dx.doi.org/10.2139/ssm.4616049>

Sangmesh, B., Patil, N., Jaiswal, K. K., Gowrishankar, T. P., Selvakumar, K. K., Jyothi, M. S., ... & Kumar, S. (2023). Development of sustainable alternative materials for the construction of green buildings using agricultural residues: A review. *Construction and Building Materials*, 368, 130457. <https://doi.org/10.1016/j.conbuildmat.2023.130457>

Şirin, C., Jamie, G., & Magdalena, H. (2023). A review on building-integrated photovoltaic/thermal systems for green buildings. *Applied Thermal Engineering*, 120607. <https://doi.org/10.1016/j.applthermaleng.2023.120607>

Wener, R., & Carmalt, H. (2006). *Environmental psychology and sustainability*, Economic Development Office-The Corporation of London.

Wahyu, K., Ardhiles, R., & Puji Hastuti, A. (2024). Smart Health Village in Improving Disaster Preparedness. *Journal of Nursing Practice*, 7(2), 305-313. DOI:10.30994/jnp.v7i2.491. <https://thejnp.org/index.php/jnp/article/view/491>

Yang, K. (2007). Designing The Eco-skyscrapers: Premises for Tall Building Design. *The Structural Design of Tall and Special Buildings*, 16. <http://dx.doi.org/10.1002/tal.414>

